Технология высоких напряжений и ионизация газа — взаимосвязанные процессы. Если рассматривать процесс с точки зрения природного явления, он происходит при разрядах молнии и ультрафиолетовом излучении, а в искусственном исполнении — при работе электродов (будь то сварка или электродуговой переплав металла) около высоковольтной ЛЭП. Чаще всего с этим явлением сталкиваются при сварных работах как обычной электросваркой, так и аргонодуговой.
Процесс ионизации газов, в зависимости от интенсивности, оказывает влияние на диэлектрические свойства защитной атмосферы и нередко ухудшает качество сварного соединения, поэтому стоит обратить на него особое внимание. Он аналогичен диссоциации электролита, реагирующего с растворителем, в результате чего освобождаются ионы. При ионизации этот же процесс активизируется либо при попадании в электрическое поле, либо при нагревании — это то, чем ионизация газов отличается от диссоциации электролитов.
Оба явления достаточно изучены, чтобы использовать их в бытовых целях, а также минимизировать оказываемое ими негативное влияние. В научной практике для контроля над атомными процессами используется ионизация газа, прибор же, основанный на этом принципе, называется детектором ионизации.
Важно! Если количество свободных электронов и катионов незначительно, а потенциал тока невысок, ионизация молекул газа не возникнет, и газ останется диэлектриком
Разберем подробнее, как происходит ионизация газа. По сути, каждый газ является диэлектриком (при нормальном давлении и температуре), поскольку заряд его молекулы нейтральный. Частицы находятся в постоянном хаотичном движении: ударяются друг о друга, отталкиваются, продолжая столкновение дальше. Чем больше концентрация молекул, тем чаще происходят столкновения (выше давление), но хаотичность от этого не меняется. И только при появлении электрического поля (направленное движение электронов) в перемещении заряженных частиц появляется направление. Каким образом?
Освежим курс химии и вспомним, какие частицы вызывают ионизацию газа. Молекула этого вещества рассматривается как электрический диполь. При попадании под «бомбардировку» электронами отдельные диполи распадаются, образуя положительно заряженные частицы — ионы (катионы, у которых недостает одного электрона) и свободный электрон. Первые движутся к катоду, вторые — к аноду, образуя электрический поток. При повышении напряженности количество «разорванных» молекул (диполей) будет увеличиваться в геометрической прогрессии, пока процесс станет не лавинообразным. И как результат — диэлектрик проводит электрический ток в газах — ионизация газов достигает своей апогейной фазы.
При постоянной подаче газа и тока, первый можно перевести в новое агрегатное состояние — плазму. Момент, когда происходит проход тока через газ, называется разрядом, по определению он может делиться на 4 типа:
Поскольку этот процесс зависит от различных параметров, то он подразделяется на 2 вида ионизации в газах:
Процесс изменения состояния газа инертен, он происходит в течение времени, на него влияют такие параметры, как напряжение, тип газа. Для расчета приращения тока за счет ионизации, а также последующего определения соотношения интенсивности и давления, используется такое понятие как коэффициент ионизации газов. Переход в состояние плазмы возможен, только если степень ионизации газа достигнет нужного предела (т. е. количество заряженных частиц будет превышать число общих).
Ионизация газа возникает под действием сторонних сил и зависит от объема газа и силы тока. Процесс отрыва электрона и его возврат называется ионизация и рекомбинация газов. Поскольку движение +/- ионов противоположно, наряду с разрушением, происходят восстановление диполей и возврат нейтрально заряженных частиц.
Важно! При работе с аргонодуговой сваркой при подключении обратной полярности нельзя сильно нагревать аргон, поскольку осуществляется переход в состояние плазмы
Чтобы исключить появление нежелательной фазы, нужно знать, при каком условии происходит ионизация газа во время сварочных работ. Появляется она независимо от режимов, в которых проводятся работы, но большую опасность представляет для обратной полярности. Здесь мы имеем дело с ионизацией газа пламенем. Разогретый свыше 2400 °С газ начинает превращаться в плазму. Это агрегатное состояние меняет свои характеристики, превращая газ из защитной атмосферы в активную струю, используемую для резки металла. Энергия ионизации газов изменяется при регулировании температуры разогрева газа (как правило, используется аргон).
Широкое применение получила ионизация газа: прибор для измерения, основанный на этом принципе, используется в современных телескопах, лазерных установках, приборах для подсчета атомных частиц — все это позволяет проводить сложнейшие опыты, изготавливать медицинское и другое оборудование. Потенциал ионизации газов еще полностью не раскрыт и проходит свою стадию изучения.
Автор: Игорь
Дата: 29.01.2019
Рейтинг статьи:
Понравилась статья?
Поделиться в соцсетях
ПОХОЖИЕ СТАТЬИ
РУБРИКИ
Какие электроды вы используете?
Полное или частичное копирование материалов допускается при размещении активной ссылки